catch22: CAnonical Time-series CHaracteristics
catch22 GitHub
  • Welcome to catch22
    • Citing catch22
    • Publications using catch22
  • LANGUAGE-SPECIFIC DOCS
    • Python
    • MATLAB
    • R
    • Julia
    • C-compiled
  • INFORMATION ABOUT CATCH22
    • Feature Descriptions
      • Feature Overview Table
      • Distribution shape
      • Extreme event timing
      • Linear autocorrelation structure
      • Nonlinear autocorrelation
      • Symbolic
      • Incremental differences
      • Simple forecasting
      • Self-affine scaling
      • Other
    • API Reference
      • Python API
      • Julia API
      • R API
      • MATLAB API
    • Contributing to catch22
      • Contributor Code of Conduct
    • Related Packages
    • License
Powered by GitBook
On this page
  • forecast_error
  • What it does
  1. INFORMATION ABOUT CATCH22
  2. Feature Descriptions

Simple forecasting

Feature of a 3-point mean forecast.

PreviousIncremental differencesNextSelf-affine scaling

Last updated 1 year ago

forecast_error

What it does

returns the a measure of error from using the mean of the previous 3 values of the time series to predict the next value. The error statistic used here is the standard deviation of the residuals from the full set of simple 1-step forecasts. Because the input time series is z-scored (standard deviation of 1), the residuals should have a standard deviation less than 1 if this forecasting method is doing something (at least minimally) useful.

Here's an example of a predator-prey system (black) for which the dynamics are varying on a timescale of 3 steps, such that mean-3 predictions (blue) are very poor forecasts. For this time series, the residuals have a higher variance than the original time series:

This ODE system, by contrast is very highly sampled, such that the time series is a similar value in 3 steps, and the forecasts (blue) are very close to the original time series, yielding residuals with a very low standard deviation (0.03):


Page cover image